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Triangles with sides given by consecutive integers �N, N+1, N+2� are fully irrational �all angles irrational
with �� if 3�N��. Rational approximations to their angles and the Hurwitz theorem in number theory are
used to define a parameter h that quantifies the irrationality of each triangle. The energy level statistics �spacing
distribution p�s� and spectral rigidity �3�L�� of quantum billiards from this one-parameter family of triangles
are investigated. The behavior of h with varying N and the numerically calculated level dynamics are found to
be closely related: h exhibits a local maximum at N=10, around which agreement with Gaussian orthogonal
ensemble �GOE� spectral fluctuations is observed. As N is increased, h decreases and the statistics depart from
GOE. Structures appear in p�s� for N�120 and eventually the occurrence of gaps in the distribution for N
�180 define the onset of a long crossover towards the sequence observed in the integrable limit of the
equilateral triangle �N→ � �.
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I. INTRODUCTION

Billiards are mathematical models used to describe the
classical dynamics of Hamiltonian systems they are isomor-
phic to. In a billiard, one considers the motion of a point
particle that moves uniformly between specular reflections at
fixed scattering obstacles in a bounded domain. The resulting
dynamics may vary from completely regular to fully chaotic,
depending on the geometry of the confining cell. Historically,
billiard models may be traced back to the celebrated hard
ball gases due to Boltzmann and Lorentz �1� in the early
decades of statistical physics. By replacing the walls of the
underlying container by periodic boundary conditions, and
separating the motion of the center of mass, one may show
that the dynamics of two hard balls can be reduced to a flow
on a torus with a circular hole. Introduced by Sinai in the
1960s, this model underpins the modern ergodic theory of
dynamical systems �1–3�. In the past two decades, both the-
oretical and experimental billiards enjoyed a great deal of
attention and played a remarkable role in the search for elu-
sive traces of chaos in quantum dynamics �4–8�.

Nowadays, the dynamics of planar billiards of interest fall
into one of three classes �3�: elliptic �convex billiards�, hy-
perbolic �concave billiards�, or parabolic �polygonal bil-
liards�. Here, we focus on a geometry that belongs to the
latter class. Billiards in polygons are known to have zero
metric �9� and topological �10� entropies. Thus, they are
never classically chaotic. While they may be ergodic �11�, “it
remains unknown whether billiards in polygons can ever be
mixing” �9�. That they are never mixing seems to echo in the
mathematical community �9,12�, despite contrary numerical
evidences found in irrational triangles �13�. Motivated by
this controversy, we have studied numerically the quantum
properties of a family of fully irrational triangular billiards
�ITBs�, and the results are offered in this paper. Previously,
numerical experiments �14� have related scarring �15� of
some wave functions in quantum ITBs to periodic orbits that
reside in a neighboring rational triangular billiard �RTB�.
Notice, however, that it is still an open problem whether
every polygon has a periodic billiard trajectory �16�. Quan-

tum RTBs have long been investigated in the physics com-
munity �17–21�. So is the case of triangles with at least one
angle rational with � �22–25�. Surprisingly, it seems that no
systematic investigation of fully ITBs has been reported thus
far. This work introduces a one-parameter family of ITBs
that fills that gap.

II. ONE-PARAMETER FAMILY OF FULLY IRRATIONAL
TRIANGLES

The usual recipe for building triangular billiards is to as-
sign rational or irrational values to the ratio between the
inner angles of the polygon and �. Instead, we approach the
problem by considering acute triangles with sides N, N+1,
and N+2, where N is an integer number. Thus, each triangle
in the subset chosen may be labeled solely by the parameter
N. As the lower limit, we have the Heron �area is also an
integer� right triangle with N=3. The upper limit �N→ � � is
the integrable equilateral triangle. In between �3�N� � �,
all triangles are fully irrational, as can be demonstrated by a
theorem due to Varona �26�, which states that, if r is a ratio-
nal number in �0,1�, then �−1 arccos��r� is rational if and
only if r� �0,1 /4,1 /2,3 /4,1�. Notice that these values cor-
respond to the only angles from which one can build an
integrable triangle. Some of the N-dependent angles are
shown in Fig. 1. As an attempt to quantify their degrees of
irrationality, we consider the Hurwitz’s theorem in number
theory: For every irrational number I there are infinitely
many rationals p /q that approximate I such that the error
E= 	I− p /q	 is less than the Hurwitz bound M =1 / ��5q2�. We
use truncated continued fractions expansions to obtain a ra-
tional approximation to each angle. Let r
E /M for a given
approximation. We look for r values smaller than 1. Two
different irrational numbers may have slightly different val-
ues of r satisfying this condition �r�1�, and we regard that
with higher q as a more irrational number. This criterion
seems plausible if the irrational numbers are in �0,1�. We
take that into account by defining the parameter h
rq as a
measure of the irrationality of I. For a triangle in the one-
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parameter family above, we take the average of the values
thus obtained for the three angles �h� as a measure of its
irrationality. Some results are shown in the lower inset of
Fig. 1: As mentioned previously, �h� exhibits a maximum for
N=10 and smoothly drops as N increases. A remarkable cor-
respondence with this behavior is found in the level dynam-
ics of quantum ITBs, as shown in the next section.

III. SPECTRAL STATISTICS

Consider then the quantum dynamics of a particle
bounded in one of these two-dimensional triangular wells.
We solved numerically the underlying Helmholtz equation

with a finite element method described elsewhere �27�, that
is satisfactory in regards to the experimentally accessible ei-
genvalues with microwave billiards �28�. Around 150 000
suitable triangular elements were used in the mesh for each
triangle. Two scarred eigenfunctions are shown in Fig. 2 for
N=4 and N=9. We have made no attempt to relate those
states neither to periodic orbits nor to their “ghosts” �14�, and
just want to illustrate here possible quantum localization of
eigenfunctions in ITBs. As for the statistical properties of the
unfolded spectra, we considered sets of more than 3000 ei-
genvalues beyond the 300th level. Fig. 3 shows histograms
for the nearest-neighbor level spacing distribution �NNLSD�
for N=7, 32, and 51. The solid line in the top panel is the
Wigner surmise for the Gaussian orthogonal ensemble
�GOE� of random matrix theory �RMT� �29�, showing a very
good agreement for N=7. The solid line in the mid panel is a
fit with a Brody distribution �Eq. �1� below� with �=0.355,
and that in the bottom panel is a numerically normalized
Poisson-like distribution given by the sum of two exponen-
tial decays with different rates, a fast one at small s and a
slow one at higher level spacing. The solid symbols in the
insets show the staircase functions �number of eigenvalues
less than or equal to a given value� of the unfolded spectra,
which could hardly be distinguished from the unit-slope 45°
solid lines, thus reflecting a good agreement with a Weyl-

FIG. 1. �Color online� Inner angles of triangular billiards with
sides �N, N+1, N+2�, ����, ����, and 	���, as defined in the
upper inset, divided by �. The horizontal line is the common as-
ymptotical limit of 1/3. The lower inset is the calculated “irrational-
ity”, as described in the text.

(b)

(a)

FIG. 2. �Color online� Density plots showing scarred wavefunc-
tions in the N=4 �top� and N=9 �bottom� ITBs. They correspond to
the 306th and 323rd eigenstates, respectively. Figures are not in the
same length scale.

FIG. 3. Calculated nearest neighbor spacing distributions �his-
tograms� for the ITBs with N=7, 32, and 51. Solid lines correspond
to the Wigner �GOE� distribution �top�, Brody distribution with �
=0.355 �middle� and to the sum of two exponentials with different
decay rates �bottom�. The dashed line is the Poisson distribution.
Insets show the corresponding staircase functions of the unfolded
spectra �solid symbols� and the 45° line. The areas of the triangles
are, respectively, 12�5, 33�3255 /4, and 1170 �N=51 is a Heron
triangle�.
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type formula �4� and assuring the good precision of the data
as well. In Fig. 4 we show both Brody and Izrailev � param-
eters as functions of N. The phenomenological Brody param-
eter � is obtained from best fits of the calculated NNLSD
with the function

p�s� = �� + 1�a�s� exp�− a�s�+1� , �1�

where

a� = 
�� + 2

� + 1
���+1

�2�

and 
 is Euler’s gamma function. Equation �1� reduces to the
Poisson �Wigner �GOE�� distribution for �=0 ��=1�. The
three-parameter Izrailev ansatz is given by

p�s� = As� exp−
�2

16
�s2 − �C −

�

2
��

2
s� �3�

and must be normalized numerically. One may relate Izrai-
lev’s � parameter to the degree of quantum localization of
the wave functions in the spectrum. It is clear from Fig. 4
that for smaller values of N, where repulsion is observed in
the highly excited energy levels, and the angles in Fig. 1 are
widely dispersed, it is more likely to find localized states
such as the ones in Fig. 2. Remarkably, the behavior of pa-
rameter � with N is qualitatively similar to that of the mean
irrationality shown in the lower inset of Fig. 1. These short
scale results are consistent with the long-range correlations.
Here we consider the Dyson-Mehta spectral rigidity �3�L�,
which gives the least-squares deviation of the staircase func-
tion from the best fit to a straight line, in an interval of length
L. The mean spectral rigidity for the GOE is related to the
two-point correlation function

Y2�r� = �
r

�

s�x�dx�ds�r�
dr

+ �s�r��2, �4�

where

s�r� =
sin��r�

�r
, �5�

via

�3�L� 
 ��3�L�� =
L

15
−

1

15L4�
0

L

�L − r�3�2L2 − 9Lr

− 3r2�Y2�r�dr , �6�

whereas for a random sequence with no correlations �Poisson

FIG. 4. Dependence of the Brody �solid circles� and Izrailev
�open circles� parameters with N, in the level-repulsion regime.
Lines are guides to the eyes.

FIG. 5. Spectral rigidity �3�L� for the triangles with N=7, 32
and 51 �solid lines�. Dashed lines are for the GOE and Poisson
statistics. The lines for the GOE process and for N=7 are almost
coincident. Inset: 1−�3�L=15� as a function of N, showing the
same trend towards the Poisson statistics as in Fig. 4. Dashed hori-
zontal line is the GOE result. Solid line is a guide to the eyes.

FIG. 6. Spacing distribution �top histogram� and spectral rigidity
�solid line in the bottom panel�, for an ITB previously studied by
Casati and Prosen �30�, as described in the text. The dashed line in
the top panel is a best fit with Eq. �1� with �=0.867; the solid line
is the Wigner distribution. The dashed lines in the bottom panel are
for the Poisson and the GOE statistics.
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process�, we have �3�L�=L /15. The dashed lines in Fig. 5
represent �3�L� for these two processes. The solid lines in
Fig. 5 are the numerically calculated rigidities again for the
triangles with N=7, 32, and 51, showing the same trend to-
wards the Poisson statistic with increasing N, as the one
shown in Fig. 3. The inset in Fig. 5 shows f 
1−�3�L
=15� as a function of N, whose behavior might be compared
to that shown in Fig. 4 and the lower inset of Fig. 1. For the
Poisson process this function vanishes, whereas for the GOE
process f �0.7262. The latter is represented in the inset of
Fig. 5 by the horizontal dashed line. The qualitative similar-
ity between f vs N, � vs N, and h vs N is apparent.

IV. DISCUSSION

Casati and Prosen �13� considered a fully irrational trian-
gular billiard with angles �= ��5−1�� /4, 	= ��10−1�� /8,
and �=�−�−	. The corresponding ratios, � /�=0.309¯,
	 /�=0.270¯, and � /�=0.420¯, geometrically place this
triangle close to the ones in Fig. 1 with N�12. We have also
calculated p�s� and �3 for this billiard and the results are
shown in Fig. 6. Confirming previous analysis by Casati and
Prosen �30�, a reasonable agreement with RMT is observed.
However, the result presented here is evidence that this is not
always observed in a fully irrational triangular billiard. A few
words on the crossover towards a regime where the spectra
might be approximated perturbatively from that of the equi-
lateral triangle is in order. In Fig. 7 we show the numerically

calculated p�s� for N=100, 120, 140, 160, and 180, as well
as that for an equilateral triangle, again for 3000 eigenvalues
beyond the first 300. Periodic structures are observed in the
distributions for N�140 and gaps are observed in p�s� for
N=180. The gaps become broader as N increases and a char-
acteristic sequence of the degenerate equilateral triangle is
reached with N→�, as shown in the right lower panel in Fig.
7. This is to be compared with the results obtained with the
exact spectrum of the equilateral triangle, whose levels are
given by �m2+n2−mn�, where m and n are integers such that
1�m�n /2 �17,18�. All levels are degenerate, except those
with n=2m. As in the numerical experiment of Fig. 7, the
distribution in the upper panel of Fig. 8 was obtained with
3000 exact eigenvalues beyond the first 300, whereas for that
in the lower panel of Fig. 8 we used 7000 exact eigenvalues
beyond the first 3000. The similarity of the two distributions
in Fig. 8 and the numerical one in Fig. 7 is indicative that our
results in irrational triangular billiards are robust with respect
to calculations at higher energies. It would certainly be of
interest to test this robustness with other numerical methods
�19,31�. Work in this regard is under way.
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FIG. 7. Numerically calculated spacing distribution at the large-
N crossover regime and for the equilateral triangle. Solid line is the
Poisson distribution.

FIG. 8. �a� Spacing distribution of the equilateral triangle ob-
tained from the 3000 eigenvalues beyond the first 300, calculated
exactly. �b� Same as �a�, for the 7000 eigenvalues beyond the first
3000.
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